lipopolysaccharide

Different types of dietary fat affect obesity through changes to the microbiome

A triglyceride molecule, the main constituent of lard.

A triglyceride molecule, the main constituent of lard.

Dietary fat comes in many in many different forms, such as saturated fats that come from foods like lard, and polyunsaturated fats that come from foods like fish oil.  It is generally believed that saturated fats lead to inflammation and obesity, but that polyunsaturated fats are healthier, and can counteract inflammation and promote healthy metabolism.  The role of the microbiome in mediating these effects is still unknown, but is beginning to be elucidated.  A team of researchers from Sweden, Belgium and Denmark showed that the lipids themselves alter the microbiome, which induces the characteristic inflammation associated with ingesting saturated fats.  Their results were published in the journal Cell Metabolism.

The scientists fed groups of mice identical diets that only differed in the type of fat that was consumed: lard composed of saturated fats, and fish oil composed of polyunsaturated fat.  As expected, the group that ate the saturated fat gained weight and had higher fasting glucose than those eating unsaturated fat.  When they measured the gut microbiomes of these mice, they discovered that the overall diversity of bacteria were much lower in the mice eating the saturated fat diet.  Next, the scientists measured the contents of the blood of the mice and discovered that there were higher levels of bacterial metabolites and bacterial components in the blood of mice eating the saturated fat diet.  Using complicated techniques that are beyond the scope of this blog, the researchers were able to trace the inflammation to an increase in specific receptors in the gut that are activated by bacteria from the saturated fat diet, including some specific toll like receptors (TLRs).  The scientists conducted a final experiment to show the importance of the microbiota, rather than the diet, in inducing these effects.  They transplanted the feces of both groups of mice into new, healthy mice.  The mice given the feces of the saturated fat group gained weight, whereas the ones given the microbiomes of the polyunsaturated fat group tended to lose weight.

The scientists believe that diets high in saturated fats upregulate specific immune system receptors that are activated by factors derived from the gut microbiome.  Moreover, these factors find their way into the blood much more easily after consuming saturated fat, as opposed to unsaturated fat, so they can easily activate these receptors.  After activation the factors lead to inflammation and obesity.  Overall, this research explains one of the reasons why polyunsaturated fats are healthier than saturated ones.  We know It’s not often anyone is faced with the choice between fish and lard, but after reading this study we recommend our readers go with the fish.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Helminths may provide therapeutic benefit to treat brain disorder

We’ve recently talked about a few articles that have studied helminth infection with respect to the microbiome, and how these infections could possibly confer some therapeutic benefits.  Another recent study conducted by researchers at Duke University reinforces these findings.  Autoimmune and inflammatory disorders appear to be more common in developed societies, and many have suggested that the microbiome is a major driver of these changes to our immunity.  These investigators wanted to assess whether or not helminths – which have a lot of influence on the immune system – had any effect in modulating the brain immune system in the context of living conditions and early-life infection, as this has been shown to result in neurodevelopment disorders. 

In this study, male and female rats were infected with a H. diminuta cystercircoid rat tapeworm a few weeks prior to breeding.  The rats were segregated by living conditions, housed in either dirty colonies (or “farm-like” environments), where no water or air filtration was provided) or standard clean pathogen-free laboratory conditions.  The offspring in both environments were delivered helminths, and the males were infected with E. coli early in life. 

Later in adulthood, the immune systems of the progeny animals were challenged by lipopolysaccharide (LPS) inductions in learning tests, and brains were collected shortly after to examine changes in molecular immune responses.  Exaggerated immune responses were observed in rats that were infected with E.coli early in life in the standard clean lab conditions.  Alternatively, the cohort that lived in the farm-like conditions did not experience an increase.  Both groups were infected with helminths.

To narrow down further, the researchers examined the impact of helminths alone in rats housed under clean pathogen-free laboratory conditions.  Indeed, cytokine responses in rats infected with E.coli were reduced in the animals whose mothers were infected with helminths before giving birth.  In addition to immunologic modulation, helminth infections in adult rats where shown to reduce memory deficits that are common following E. coli infection, suggesting helminth infection played a role in modulating developmental disorders due to bacterial infection. 

The helminths also had an effect on the microbiomes of the rodents.  16s rRNA sequencing revealed an average 25% shift in microbiome composition of animals infected with helminths (with a predominant shift of Bacilli to Clostridia).  Rats that were infected with E. coli early in life experienced a microbiome composition shift in adulthood, as more harmful Bacteroidetes species were found in adults.  Interestingly, this observation was not found in those who were E.coli infected but also infected with helminths, suggesting helminths prevented this composition shift. 

Overall, these findings suggest that helminths could provide therapeutic benefit, especially after infection early in life.  It will be interesting to see how this research can translate to human models, especially by narrowing down bacterial infections that could harm or benefit development.  Understanding what drives these developmental complications could have immense health benefits for the public. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

The microbiome’s role in pediatric intestinal failure and associated liver disease

Gray's anatomy schematic of the liver.

Gray's anatomy schematic of the liver.

On Wednesday we talked about children who suffer from short bowel syndrome (SBS), specifically highlighting the role of the gut microbiome alongside its relationship to parenteral nutrition (PN).  In addition to demonstrating microbial dysbiosis in children with SBS, intestinal dysbiosis was noticed in patients receiving PN, while those who had been weaned off showed bacterial overgrowth. 

SBS can also lead to intestinal failure (IF) and further complications.  Among the many, PN and disrupted bowel function have both been shown to lead to IF-associated liver disease (IFALD), which can result in severe illness and even death.  Steatosis, a pathological indication used to describe abnormal lipid retention in cells, has been observed in liver histological samples. 

The cause of IFALD remains unclear, but findings from studying other liver disorders suggest involvement of the gut microbiome.  Intestinal overgrowth has been postulated for quite some time now, but evidence is lacking and the exact biological underpinnings that lead to liver injury remain unclear.  Researchers in Finland sought to address this, estimating that IF-induced disruptions to the gut microbiome of pediatric patients played a direct role in causing this liver damage. 

Twenty-three pediatric patients developing IF were selected for this study.  Researchers collected fecal samples to analyze microbiota populations and took liver biopsies to examine inflammatory damage and fibrotic tissue morphology.  In line with previous findings, the microbiomes of patients with IF had limited bacterial diversity and species richness as compared to those of healthy children and adults. 

A strong correlation was observed between microbiota composition and liver steatosis, and different microbiota strains were shown to be associated with different stages of the disease progression.  Additionally, an overabundance of microbiota in the Proteobacteria phylum was observed in patients undergoing PN.  The Proteobacteria phylum contains many opportunistic pathogenic bacteria, including E. coli.  Interestingly, Proteobacteria species produce lipopolysaccharides, which are known toxins to the liver.  The researchers were also able to model that bacterial composition was a strong predictor of liver steatosis than nutrition history or bowel length post-resection surgery. 

These findings led the researchers to propose that intestinal resection, alongside PN, disrupts the intestines, and consequently native microbiota populations.  The disruption and species decline invites opportunistic bacteria, such as those in the Proteobacteria phylum, to populate the intestine.  These bacteria release of lipopolysaccharides into the blood stream, and upon reaching the liver, induce inflammatory toxic damage leading to steatosis. 

This study complements Wednesday’s discussion and helps us makes better sense of a convoluted disease complication that has drastic consequences.  Understanding the microbiome’s influence on post-SBS liver disease can help clinicians make informed decisions to rescue pediatric patients from these ailments.  

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.