obesity

Microbiome in obese mice regulates hematopoietic stem cell differentiation

diagram-41545_640.png

Obesity is a worldwide epidemic that has many downstream health effects, including musculoskeletal diseases such as arthritis and bone disease. It is not yet fully understood what the mechanisms are that lead to these conditions however it is believed that changes in the function of immune cells in the body may lead to these effects. The microbiome of obese individuals may also impact immune cell function.

Scientists recently published a study looking at the impact that diet and obesity had on the hematopoietic stem cell (HSC) system. They induced a short term obesity as a result of diet in mice. They found that a high fat diet (HFD) altered the bone microenvironment and as a result the HSC niche. The HSC niche which is made up of cells of the osteoblastic lineage that give rise to bone-forming cells seemed to be altered as a result of Gram-positive bacteria in the microbiome.

These changes to the HSC system in the bone marrow as a result of microbiome have important implications for understanding obesity induced bone disease. Altering microbiome composition, and specifically by low-fat diet, may be a possible therapeutic modality for treating bone disease and other immune diseases impacted by the hematopoietic stem cell niche. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Microbiome affects blood glucose levels after eating, can help predict glycemic response to foods

halloween-candy-1014629_640.jpg

Postprandial (post-meal) glycemic response (PPGR) is the effect that food has on blood glucose levels.   Eating a sugary candy, for example, will raise blood glucose levels, whereas drinking water will not.  PPGR remains an important predictor for metabolic syndrome and type II diabetes, so it has an important role the obesity epidemic.  Unfortunately, PPGR is difficult to predict, and efforts that are based on individual foods themselves have failed.  New research shows that there are many factors, including the microbiome, that are important to predicting blood glucose after a meal.  The research out of Israel and published in the journal Cell presents a new model that can more accurately predict PPGR that is based on personalized factors.

The researchers catalogued 800 peoples’ meals over 7 days while continuously measuring their blood glucose levels.  In addition they monitored their gut microbiota, weight, sleep, and various other lifestyle factors.  After evaluating the data, the scientists realized that identical foods had vastly different PPGRs.  For example, bread could have a 8 fold variation in glycemic response depending on the individual.  In order to explain these differences, the scientists identified several significant associations between the microbiome and the PPGR from specific foods.  For example, on the phyla level high abundances of Proteobacteria and Enterobacteriaceae were associated with poor glycemic controls.  On the species level Eubacterium rectale, which is known to ferment fiber, was correlated with low glycemic response, and Parabacteroides distasonis, which had previously been associated with obesity, was correlated with hight glycemic response.  The scientists then aggregated all of their data, including microbiome data, and created a predictive algorithm for the PPGR from foods for individuals.  This algorithm accurately predicted the glycemic response from foods on a personalized level, and was more informative than general food based predictions.

This study speaks to the power of personalized medicine that is based on the microbiome.  Knowledge of our own microbiome could be used to advise our dietary choices in order to choose foods that will lead to low PPGR, and decrease our risk for metabolic syndrome.  Overall, the scientists determined that of all foods, eating fiber was most beneficial because it lowers glycemic response over the long term.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Gut microbiome depletion promotes healthier brown fat and reduces obesity in mice

The white and brown turkey meat from a Thanksgiving dinner

The white and brown turkey meat from a Thanksgiving dinner

An interesting article from Switzerland was published last week in Nature Medicine.  The scientists reported on a new connection between the gut microbiome and metabolic syndrome (i.e. insulin sensitivity, obesity, etc.)  Whereas most papers observe microbiome disruption and depletion is associated with obesity, this paper describes a different phenomenon: that mice with depleted microbiomes are metabolically healthier than their untouched microbiome counterparts.  As part of the basis for the paper it is important to understand that mammals have two types of fat, brown fat and white fat.  Brown fat is associated with exercise, insulin sensitivity, and health, and white fat is associated with insulin resistance and diabetes.  Brown fat can actually repopulate white fat in a process called browning, and this transition is healthy.  

In the study, the scientists started with either normal mice, germ free mice, or mice that had antibiotics administered to them. They challenged each group of mice with glucose, and noted that antibiotic administration led to improved insulin sensitivity.  When they investigated where the glucose was going, they discovered that it was uptaken by white adipose tissue under the skin.  Then, they compared the normal mice and antibiotic mice, and observed that the antibiotic mice actually had smaller volumes of fat after the glucose uptake.  Interestingly, the fat cells in the germ free and antibiotic mice were smaller and more dense, whereas the normal mice had fewer, larger cells.  The researchers then confirmed that browning of fat was occurring in the germ free and antibiotic mice.  Finally, when the scientists transplanted the microbiome of normal mice into the germ free mice a reversal of many the above described characteristics occurred.  In these mice the fat stopped browning, insulin resistance decreased, and the mice gained weight.

The scientists were able to attribute some of the above phenomena to the release of specific cytokines (molecules that regulate the immune system).  This paper, then, adds to the wealth of research that describes the complex but critical interaction between the gut microbiome, the immune system, and metabolic syndrome.  Although the relationships between these things is yet to be fully understood, this paper may at least change the way you think about the dark and white meat during Thanksgiving dinner this Thursday.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Prebiotics in human breast milk are associated with infant weight

Human breast milk contains nutrients and compounds that are beneficial for infants. Human milk oligosaccharides (HMOs) are a group of important complex carbohydrates that are found in breast milk. These HMOs are important in the developing infant because they serve as a prebiotic, helping to shape the infant’s gut microbiome by facilitating the selection of beneficial bacteria. The link between gut microbiota composition and infant obesity has led to speculation that HMOs might affect certain bacteria that in turn lead to decreased body fat. Because HMO composition of female breast milk varies over the course of lactation, researchers in Oklahoma and California tested to see whether differences in milk HMO content are associated with infant body weight. The results of their study were published in The American Journal of Clinical Nutrition.

Twenty-five mother-infant pairs participated in this study. On average, the mothers were 29.5 years of age and overweight before conception. When the infants were 1 month and 6 months old, the mothers supplied breast milk samples to test for HMO composition. Concurrently, the infants’ body fat composition, weight, and length were measured.

The findings suggest that HMOs are associated with infant body weight, fat mass, and lean mass at both 1 month and 6 months. A diversity of HMOs, such as LNFFPI (lacto-N-fucopentaose I, a sugar), DSLNT (difucosyl-LNT, a sugar), and FDSLNH (fucosyl-disialyl-lacto-N-hexaose, a sugar) accounted for 33% of the fat mass, which was more than other variables such as gender, and mothers’ pregnancy BMI. infant fat mass than did sex, pregnancy BMI.  LNFPI was inversely associated with 1 month old infant weight, while at 6 months it was inversely associated with weight, lean mass, and fat mass. Overall, the presence of a diverse group of HMOs decreased infant body mass.  While this study has its limitations because it does not specifically test the bacterial composition of the gut, it is a first step to identifying an association between HMOs and infant BMI. As obesity remains an epidemic in the United States, perhaps the microbiome is the first place to look towards to prevent the disease. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Probiotic does not restore gut microbiota function in patients with metabolic syndrome

Insulin resistance may increase the risk for metabolic syndrome

Insulin resistance may increase the risk for metabolic syndrome

Metabolic syndrome is a condition that often leads to diabetes, heart disease, and even stroke and obesity, a chronic worldwide epidemic is a leading cause of metabolic syndrome (MetS).  It has also been shown that the microbiome may be an important factor in the development of obesity and subsequently, MetS, possibly due to its impact on gut barrier integrity and inflammation. While probiotics have been used as an intervention in several animal studies on obesity and MetS, there have not been sufficient results in humans to show it is having a positive effect.

Despite significant amounts of research, the question still remains if probiotics are having a lasting effect on the gut when administered. It is not clear if taking a probiotic is colonizing in the gut or if it is only providing an acute response during the timeframe it is being administered. A team of scientists published their work showing the effect that Lactobacillus casei Shirota (LcS) had on patients with MetS. The researchers administered LcS to 13 patients with MetS and 15 individuals received no LcS. They sequenced their microbiota composition from stool samples and compared it to healthy controls.

They found that LcS did not have an impact on Bacteroidetes/Firmicutes ratio and that it was slightly higher in the healthy controls. Serum bile acids were similarly not affected by LcS administration. While they did see small microbiota changes, LcS was not able to change the Bacteroidetes/Firmicutes ratio or gut barrier dysfunction, two important staples of metabolic syndrome.

While the small sample size of the patient cohorts may have been a factor in the failure to observe microbiota changes after probiotic administration, it was still important to see that probiotics may not always have the intended consequences we are seeking. In this study, probiotic administration did not provide a benefit to the Metabolic syndrome patients and further studies will be needed to better understand the microbiome implications of probiotics.

 

 

 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Associations between the microbiome and blood lipids

Cholesterol molecule

Cholesterol molecule

It is well known that we have to be careful with what foods we eat, remembering to stay healthy and eat our fruits and vegetables. Diets high in fat can create serious health issues such as obesity, high cholesterol, and possibly Type 2 diabetes. Also on that list of related health problems is cardiovascular disease, which is characterized by blood clots, due to fat and plaque build-up in blood vessels, and can lead to a heart attack or stroke. Previous research has implied a connection between the microbiome and cardiovascular disease, due to the microbiome’s effect on production of a molecule called trimethylamine N-oxide (TMAO). As of yet, no research has been done to track the association between the microbiome and lipid (fat) build-up, so this is precisely what researchers published in Circulation Research set out to do.

The scientists located in The Netherlands, Poland, and Massachusetts, collected blood cholesterol measurements from 1500 LifeLines-DEEP subjects. LifeLines-DEEP is a collection of subjects used for assessing various health issues. Ethnic outliers and genetically related participants were removed from the study. Fecal samples were collected from 1180 participants, and sequenced. By the end of the data collection, 99 participants were excluded for reasons such as antibiotic use, or use of potentially microbiome-altering medications. In total there was a final number of 893 participants (380 men and 513 women) for which cholesterol samples, microbiome samples, and genotypic information was obtained. The participants included a wide range of age, BMI, and blood lipid levels.

The researchers found that gut microbiome species richness was significantly higher in women, and increased with age. Microbial richness was positively correlated with high density lipoproteins (HDL, the 'good cholesterol'), not correlated with low density lipoproteins (LDL, the bad cholesterol), and negatively correlated with body mass index (BMI). For example, the study confirmed that lower abundances of kingdom Archaea, families Christensenellaceae and Rikenellaceae, class Mollicutes, and genus Dehalobacterium are associated with high BMI. It was estimated that the microbiome could explain 4.57% to 65 of variation in BMI, triglyceride and HDL. No link was found between the gut microbiome and genetic predisposition to obesity of high blood lipid levels.

One hypothesis raised by the researchers is that bacteria potentially try to correct lipid imbalances, thereby helping to prevent cardiovascular disease. The strong associated between the gut microbiome and BMI and blood lipid levels – regardless of age, sex, and genetics – suggests that the microbiome does indeed play a role, if indirectly, in cardiovascular disease and other fat-related issues. 34 gut bacteria were found to be associated with BMI and blood lipids. There is a real potential for the utilization of this information in health therapies, such as blood clot and stroke prevention.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.