Moraxella

Understanding the nasal microbiome

Electron micrography of Staphylococcus aureus.

Electron micrography of Staphylococcus aureus.

The nasal microbiome remains largely unstudied despite its potential importance to many diseases, such as rhinosinusitis, allergies, and staph infection (incuding MRSA).  Staphylococcus aureus is probably the most well-known nasal resident, but simple questions, such as which species of bacteria are most prevalent in the nose, are still not answered.  Understanding all the residents of the nasal microbiome, the influence of our genetics and the environment on defining their populations, and the influence each one has on others may be critically important to preventing diseases such as staph infection, and more research is needed.  Fortunately, a new study out of Johns Hopkins that investigated sets of twins shed light on many of these questions, and was published in Science Advances last week.

The scientists sequenced the nasal microbiomes of 46 identical and 43 fraternal pairs of twins.  First, thy learned that these people’s nasal microbiomes could be classified into 7 different phenotypes or community state types (CST) which broadly described their nasal microbiomes.  These 7 types are defined by their most abundant bacteria, and are as follows: CST1 – S. aureus, CST2 - Escherichia spp., Proteus spp., and Klebsiella spp., CST3 - Staphylococcus epidermidis, CST4 - Propionibacterium spp., CST5 - Corynebacterium spp., CST6 - Moraxella spp., and CST7 - Dolosigranulum spp.   The most common CTS was CTS4 with 29% of the sampled population having that CTS, whereas CTS4 was the least popular, coming in at 6% of the individuals tested.  The researchers noted that many of these bacteria, such as Proteus, were not considered to be important to the nasal microbiome at all, so their dominance in some noses was surprising.  The scientists learned that genetics plays nearly no role in the microbiome community composition, but does influence the overall microbiome population.  In addition, gender influenced the overall population, with women having about half as many total bacteria in their noses as men.

With regards to S. aureus, while it existed in 56% of the individuals studied, it was associated with other bacterial.   For example, the researchers discovered that Dolosigranulum, and Propionibacterium granulosum were negatively correlated to the existence of S. aureus, whereas S. epidermidis was positively correlated with S. aureus abundance.  This lends itself to the idea that specific bacteria can create colonization resistance against S. aureus, and thus could be used to prevent the disease.  The researchers suggest a probiotic should be tested for its therapeutic value in preventing S. aureus colonization, and hopefully they move forward with those trials.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

The nasal microbiome of infants may impact risk of developing asthma

Many lower respiratory illnesses have been shown to associate with specific lung, throat and nasal bacteria, but the role of the microbiome is still unclear, and mechanisms for the connection have yet to be proven.  Of particular interest is asthma, which affects around 7% of people in the US, and increases a person’s risk for many other conditions.  While it is normally diagnosed in toddlers, scientists believe that the groundwork for the disease is actually laid during infancy.  With that in mind, researchers in Australia performed the first longitudinal study of infants’ nasopharyngeal (nose and throat) during the first year of their lives, and tracked episodes of respiratory illness during that time.  They discovered a strong connection between the microbiome and respiratory illness, including asthma, and last month published their results in Cell Host and Microbe.

The researchers collected nasopharyngeal microbiome samples from 234 infants at different time points during their first year of life.  Most infants’ microbiomes were dominated by the following species: Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Alloiococcus otitidis.  Interestingly, this was true for infants regardless of birth delivery mode (i.e. cesarean or vaginal) as well as length of breast feeding.  In contrast, having a furry animal in the house tended to increase the abundance of Streptococcus, but having older siblings tended to decrease it.  In addition, there were strong seasonal effects on the microbiome, with Haemophilus being associated with the summer, and Moraxella the winter.  In children with respiratory illness, Haemophilus, Moraxella, and Streptococcus were most frequently measured, and Staphylococcus, Alloiococcus, and Corynebacterium least frequently measured.

When the scientists compared their results with the asthma outcomes of the children at 5 years old they noticed one significant trend.  Colonization by Streptococcus at around 2 months old, which was asymptomatic at the time and occurred in 14% of infants tested, was strongly connected to chronic wheezing (itself an indication of asthma) at 5 years old.  They suggest that the developing airways in infants may be especially vulnerable to Streptococcus.

This long term study does a really nice job of defining how the microbiome grows and develops in the airways of infants – something which previously hadn’t been performed at such a large scale.  While this study alone does not figure out exactly what the microbiome’s role is in childhood respiratory illnesses, it does provide a baseline for future studies to work off of.   

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.