pregnant

Vacuuming may affect our microbiomes

The westernized lifestyle includes something that we often do not realize is a more important part of our life than it was to people hundreds of years ago: cleaning. With newly developed technology, like vacuuming, we are able to maintain cleaner homes, but this has also increased exposure to allergens such as dust mites. Allergens have a proven impact on the immune system of exposed persons, and as we have seen, the microbiome and the immune system are closely linked. The work of certain Norwegian scientists, published by Microbiome, explores the significance of washing and vacuum cleaning on the gut microbiome of mothers and their children.

The study group included 358 mother-child pairs that were included in a controlled non-randomized longitudinal study called IMPACT (Immunology and Microbiology in Prevention of Allergy among Children in Trondheim). Data was tested for the pregnant woman and then their two-year-old children (two years later). Average cleaning frequencies were 2.9 washings and 6.6 vacuum cleanings per month. For pregnant women, increase in Faecalibacterium prausnitzii showed the strongest association with increased vacuum cleaning frequency in once statistical model, while Roseburia faecis was found to have the strongest association in another statistical model. For the 2-year-old children, the Blautia species in one model, and the Oscillospria species in a second model, were identified as significant.

While the results of this study are a bit confusing, the main point is that the indoor household environment, including hygienic behavior, could have a potentially significant influence on the adult gut microbiome. High frequency of vacuuming could increase allergen presence in the air, which, when breathed in, could go on to influence the immune system – and therefore the microbiome. While many other environmental factors could not be controlled for in this study, the results do bring up the possibility of allergen and microbiota association.       

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Does the use of antibiotics for bacterial vaginosis during pregnancy reduce the risk of preterm birth?

Bacterial vaginosis (BV) is an inflammatory disease that is defined as a vaginal microbiome that is not dominated by Lactobacilli.  This abnormal vaginal flora is associated with preterm birth and miscarriage.  A recent study showed that women’s vaginal microbiomes shift frequently during pregnancy, but that the amount of time spent with a flora not dominated by Lactobacillus was associated with the length of the pregnancy, i.e. the less time spent with Lactobacillus the shorter the pregnancy.  Considering these studies, doctors may want to begin screening the vaginal microbiome during pregnancy, and treating BV (which is currently done through antibiotics).  Strategies such as that one have not yet been rigorously studied, so their efficacy is still unknown.  Last week a study out of Japan performed a study that showed little improvement in preterm birth risk by monitoring and treating BV during pregnancy.  The results were published in Nature Scientific Reports.

The researchers measured the microbiomes of 1,735 pregnant women and split them into two groups.  Women in the intervention group that had BV were given antibiotics, whereas women in the control group, whether they had BV or not, proceeded as normal through their pregnancy.  Women in both groups had their vaginal microbiomes sampled at various time points throughout the pregnancy. The first group would have their BV status verified, and placed on antibiotics. In both groups, approximately 10% of the women had preterm birth at around 30 weeks gestational age.  There was no significant difference in these rates between the two groups, meaning that administration of antibiotics did not appear to prevent preterm birth.  Even though the antibiotics did not prevent preterm birth, the researchers noted that regardless of group, women who entered preterm birth did have abnormal vaginal flora compared to women who went full term, supporting the notion that BV is highly correlated with preterm birth.  They noted that many of the women who entered preterm labor did not have BV at the initial time of screening, but acquired BV at some point during pregnancy. 

This paper supports the idea that BV may cause preterm birth, however it cannot recommend universal screening for BV in pregnant women for two reasons.  First, the antibiotics did not appear to affect the rates of preterm birth, and second many of the women who had preterm birth only had abnormal flora after initial screening.  Perhaps a better strategy would be to constantly monitor BV status throughout pregnancy.  In addition, there will soon be healthier and more effective methods to treat BV than antibiotics, which are only shown to have a transient effect on BV and disrupt the rest of the microbiome.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Antibiotic exposure during pregnancy may increase risk of obesity in children

We’ve talked a lot about the importance of a woman's microbiome during pregnancy.  Microbiota transfer from the mother to the fetus is critical toward development, having potential downstream health implications for the child.  Researchers in Denmark have recently pointed to the significance of the maternal microbiome with respective to risk of developing obesity during childhood.  Specifically, prenatal infection and neonatal antibiotic use are both associated with childhood obesity.  Researchers wanted to explore further and determine whether or not antibiotic administration prenatally is associated with childhood obesity.  

9,886 Danish children between the ages of 7 and 16 years old were analyzed over 10 years, and information was collected from routine school anthropometric evaluations.  To determine which of the children were exposed to antibiotics prenatally, prescription dispensations and infection-related hospital admissions information was collected from the mothers’ of the children.  Of all the children assessed, 3,280 – or 33% - were exposed to antibiotics prenatally. 

Among all 9,886 children, 768 (7.8%) were overweight as determined by body-mass index ratios.  Increase overweight incidence was correlated to antibiotic use during the second and third trimester.  309 (3.1%) children were considered obese.  Children with obesity were associated with increases in the number of antibiotic prescriptions for the mother.  Overall, antibiotic exposure prenatally was associated with a 26-29% increase in prevalence of both overweight and obesity in childhood. 

These findings point to an interesting relationship that deserves further exploration.  As mentioned, antibiotics have been shown to disrupt microbiome transfer from mother to fetus.  In addition, microbe-associated molecular patterns in development have been shown to be disrupted by antimicrobials.  These agents could also possibly disrupt endocrine and metabolic systems, leading to impaired energy homeostasis and metabolism, and consequently downstream weight issues. 

Obesity is becoming a major health concern for the global population.  Elucidating more information on the molecular underpinnings of the association between antibiotic use and prenatal development could help reveal more information, and perhaps create awareness of maternal antibiotic intake during pregnancy and/or encourage therapeutic intervention in children with obesity. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Bacterial vaginosis associated bacteria may increase a women’s risk for miscarriage

Bacterial infections or even slight imbalances can be damaging at many difference locations in the human body. One that should be taken seriously in bacterial vaginosis, which is an infection in females where a healthy bacterial balance is taken over by bacteria such as Gardnerella vaginalis, Ureaplasma urealyticum, and Mycoplasma hominis to name a few. Meanwhile, the presence of Lactobacillus crispatus and Lactobacilus iners would be characteristic of a normal vaginal microbiome. In a study out of Philidelphia, Pa that was recently published by Maternal and Child Health Journal, researchers inspected a possible connection between bacterial vaginosis and pregnancy miscarriages.

          A total of 418 pregnant women were included in the study. 65% of the women were African American, 27% were Hispanic, and 4% were Caucasian. Women were eligible if they were seeking treatment prior to 14 days of gestation, if they were not pregnant with multiples, and if there were no issues in terms of ectopic or molar pregnancy. Swabs were collected from the women and analyzed. During this study, 74 women experienced a miscarriage, while 344 delivered at term.

          It was found that the group of women who had miscarriages were older than those who did not. Women with high concentrations of Bacterial Vaginosis-Associated Bacterium 3 (BVAB3) before 2 weeks gestation had a 20% increased chance of miscarriage. On the other hand, for each one unit increase in Leptotrichia/Sneathia species concentration, risk of miscarriage decreased by 20%, and for that of Megasphaera phylotype 1-like species risk decreased by 19%. The implications of this type of research could be very beneficial to women everywhere. More knowledge like this could hopefully one day lead doctors towards even better care for pregnant women. Ideally, with more research into this area, the prevalence of miscarriages could be lowered. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

Asthma could be brought on by maternal diet and lack of bacterial metabolites

Asthma has become increasingly prevalent in Western societies, and while many theories have been explored as to the reason for this rise in prevalence, many are beginning to explore connections between dietary intake and associations with the microbiome as a manifestation for this malady.  High fat, low fiber diets – which are common in the West – are associated with high rates of asthma.  Investigators in Australia sought to explore this relationship further by understanding the cellular underpinnings of these associations.  Specifically, they explored whether or not high fiber diets in mice could suppress the onset of Allergenic airway disease (ADD -i.e. asthma).  Furthermore, maternal fiber intake was also examined to see what affects would result for the progeny when challenged with asthma inducing conditions.  They published the results in Nature Communications.

Using 16S sequencing the researchers first confirmed that the high fiber diet shaped gut microbiome composition in mice.  Specifically, a significant difference was observed between control diet and no fiber diet.  Bacteroidetes were highly abundant in mice that were fed the high fiber diet, including high acetate producing Bacteroides acidifaciens strain, while Proteobacteria were found abundant in the no fiber diet.  High fiber diet mice also displayed higher levels of short-chain fatty acids, metabolic products of the gut microbiota that provide overall positive health benefits. 

Turning next to the pathology, experimenters were first able to validate that HDM did indeed induce AAD, as confirmed by inflammatory cells and signal markers found in the bronchoalveolar fluid of mice.  Indeed, mice that were on the high fiber diet did not develop AAD symptoms.  Interestingly, this was also shown in control animals who were administered HDM but were provided acetate (a short-chain fatty acid) in their drinking water. 

Mice were then bred and split into three dietary groups based on diet, a control group, high fiber group, and no fiber group.  Allergenic airway disease (AAD) was induced using a house-dust mite (HDM) model which replicates certain aspects of human asthma.  Diets were provided three weeks prior to sensitizing the animals to HDM, and AAD was evaluated after 16 days following 15-day HDM exposure.

Pregnant mice were also subjected to the three different diet regiments in the previous experiment.  The offspring were born and given a control diet, but after 6 weeks they were administered AAD.  The mice that were born from mothers on the high fiber diet did not develop AAD into adulthood, demonstrating that maternal diet can suppress AAD in adult offspring.  Interestingly, these findings were correlated with human data that demonstrated that high fiber diets in mothers’ in late-stage pregnancy was correlated to high acetate in serum samples.  Maternal acetate levels above median levels of samples taken was associated with significantly less visits to the general practitioner for wheezing complaints and/or asthmatic incidences in their children.    

Increasing numbers of studies are showing similar patterns that behaviors of the mother can affect microbiome transfer to progeny, consequently affecting the health and development of the offspring.  One of these important factors as we have seen is the diet of the mother.  As further evidence is uncovered as to the importance of high fat diets and specifically the diet of the mother, it will be important to have conversations on the best way to educate the public about this evidence as well as implement recommendations for dietary habits during pregnancy. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

The placental microbiome

Microbiome populations have been well-characterized in many distinct body-sites.  Interestingly, there is a lack of knowledge in the microbiome of the placenta, an environment that was long thought to be sterile.  Investigating the placenta is important toward understanding the microbiome in human development, especially in light of previous evidence demonstrating that human microbiota populations fluctuate extensively in the first year(s) of life.  The placenta is the cradle of life for fetal development, leading researchers from Baylor School of Medicine to study the microbiome of this tissue.  Placenta samples were collected and analyzed to characterize the placenta microbiome, and explore links to fetal development and microbiome compositions. 

320 placenta specimens were collected, and PCR was used to characterize bacterial populations.  The Meta genome sequencing revealed that the placenta microbiome harbored unique abundances in specific bacteria compared to other body sites.  E. coli in particular had the highest species abundance.  Interestingly, the microbiota populations were most similar to the oral microbiome.  Species such as Prevotella tannerae and Neisseria, known to populate the mouth, were also abundantly present in the placenta.  Further analysis confirmed that the placenta bacteria were indeed most similar to bacteria specifically found in the tongue, tonsils, and gingival plaques. 

The researchers also demonstrated an association between placental microbiome composition and healthy births or births with complications.  Specifically, a significant association was shown between distinct placental microbiome populations and pre-term birth.  Taxa such as Durkholderia were shown to be enriched in the placentas of those who delivered their infants preterm, whereas Paenibacillus was abundant in normal terms placental specimens. 

This study reveals a couple very interesting associations between cross-site microbiome similarities and disruptions in compositions that appeared to be linked to preterm birth.  Although not definitive evidence, these findings could lead to some important research in the future.  There were a few confounding elements to this study, such as other body site samples occurred in non-pregnant subjects, or the fact that the mass of the placental microbiota was particularly low.  However, these findings certainly raise awareness of the uniqueness of the placental microbiome, and what this means in terms of the microbiome entering the developing fetus.  It will be interesting to see what further research can reveal about this relationship. 

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.