Ascomycota

The microbiome of the international space station

Characterization of the microbial composition of the International Space Station (ISS) is a topic that currently interests the National Aeronautics and Space Administration (NASA). The ISS is an interesting environment because it is a built environment that experiences constant human contact, microgravity and space radiation. Understanding the ISS microbial community would help with help and safety concerns as well as proper maintenance of the ISS. Scientists across the United States combined their efforts to properly characterize the microbial community of the ISS, and compared it to cleanrooms on Earth. The results were published by Microbiome.

         Samples were collected from ISS high-efficiently particulate arrestance (HEPA, vacuum cleaner bag components from the ISS, and two cleanrooms at the Jet Propulsion Laboratory (JPL) in Pasadena, CA. Cleanrooms are closed rooms with little human traffic and filtered air. Bacterial and fungal samples were cultured and sequenced using next generation sequencing techniques in order to determine identities. Sixteen fungal strains were isolated from the ISS samples compared to the three strains from JPL samples, with most strains being associated with the phylum Ascomycota. Bacterial samples from the ISS were dominated by Actinobacteria, Bacilli, and Clostridia, while samples from the JPL were dominated by Alphaproteobacteria and Gammaproteobacteria. On a genus level, the two sample environments were completely distinct as well.

         This study shows that the International Space Station has a very distinct microbial community that must be monitored. As we know that the microbiome is so influential on health, it is important that the ISS bacteria are characterized in order to ensure the health and safety of those on board. This is just another important example that the microbiome has a great influence on humans, even from out in space.         

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

The fungal microbiome in obese individuals

We hear mostly about the bacterial microbiome but there are other microbiomes out there like the virome (virus microbiome) and mycobiome (fungal microbiome). The mycobiome is an important part of the gastrointestinal tract and fungal microorganisms make up between .03-2% of the total microorganisms in the gut. A recent study out of Spain characterized the mycobiome of obese individuals and compared them to non-obese individuals.

The scientists used sequencing technologies to analyze the diversity of fungal organisms in the gut of 52 Caucasian individuals who were recruited for the study. After fecal sampling and sequencing, they found that diversity was lower in obese subjects than in non-obese subjects and they could be stratified depending on their mycobiome composition. Ascomycota and Basidiomycota were not significantly different between the two groups, however, the minor phylum Zygomycota was represented less in obese patients.

Interestingly, they found that the relative abundance of fungus in the Eurotiomycetes class of the Ascomycota phylum were similar between obese individuals and non-obese individuals but obese subjects with low levels of Eurotiomycetes had worse metabolic profiles. These subjects were identified as more “unhealthy” obese subjects than those with a higher abundance of Eurotiomycetes. 

This was the first study to look at the human mycobiome in relation to obesity and associated metabolic disorders. Further knowledge of these interactions between the mycobiome, microbiome, and metabolic disorders may elucidate new methods for treating obesity and metabolic syndromes.  

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.