acute graft versus host disease

Microbiome metabolite in urine predicts severity of graft versus host disease

Molecular structure of indoxyl-sulfate

Molecular structure of indoxyl-sulfate

People that suffer from blood cancers, such as acute myeloid leukemia, often times receive hematopoietic stem cell transplants (HSCT) as part of their therapy.  This procedure typically replaces the sick person’s white blood cells with those of a healthy donor.  While this is a life-saving procedure it does carry a type of transplant ‘rejection’ risk.  While in a normal organ transplant a person’s own white blood cells will attack the foreign organ, in this case the new, donor white blood cells begin attacking parts of the recipient’s body.  This is called graft versus host disease (GvHD), and can often times be fatal.  One of the primary areas that are attacked by the new blood cells is the gut microbiome.  This is not surprising because the ‘replacement’ immune system is not programmed to tolerate and accept the bacteria in the gut, because they are so different from the bacteria it was originally adapted for.  Therefore, GvHD, is often considered a microbiome disease, and there have even been studies to investigate whether matching microbiomes decreases risk for the disease. 

An important area of research is focused on detecting GvHD before it begins so that it can be treated early.  While normally GvHD is diagnosed by symptoms, it may be possible to use the microbiome itself for early detection of the disease.  A group out of Germany recently showed that by monitoring a specific metabolite produced in the gut, indoxyl sulfate, one could predict the severity of GvHD.  This molecule is only produced by bacteria, mostly in the gut, by breaking down the amino acid tryptophan.  Moreover, indoxyl sulfate is an important signaling molecule that is thought to modulate the gut epithelial function, and may cause inflammation.  They published the results of their study in the journal Blood last week. 

The scientists measured the indoxyl sulfate concentration in the urine of 131 individuals undergoing HSCT over the course of 28 days following the treatment.  After, the ranked the patients in terms of indoxyl sulfate level during the first ten days after transplant, and compared their outcomes.  Remarkably, the people that had the lowest levels of indoxyl sulfate had a statistically significant higher risk of dying of GvHD after 12 months.  Next, the scientists attempted to relate the gut microbiome composition of the patients with the indoxyl sulfate levels.  They realized higher diversity microbiomes were related to higher indoxyl sulfate levels, and healthier outcomes.  In addition, higher levels of Clostridia and lower levels of Bacilli led to higher indoxyl sulfate.

This study may go a long way in informing clinicians about GvHD risk in their patients.  Not only does it show that monitoring indoxyl sulfate may predict GvHD severity, but it also points to specific bacteria that may be important in controlling its levels.  HSCTs are a highly effective treatment for blood cancer, that often times have a higher efficacy/safety profile compared with traditional cancer therapies.  Understanding the microbiome’s role in GvHD, one of the most important risks of HSCT, will hopefully lead to improved therapies and better overall cancer outcomes.

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.

The fate of the gut microbiome following stem cell transplant

Bone marrow prior to transplant

Bone marrow prior to transplant

Hematopoietic stem cell transplant (HSCT) is a difficult procedure that is usually administered to patients suffering from bone marrow or blood cancers such as multiple myeloma or leukemia.  Unfortunately, many patients who receive this treatment develop acute graft-versus-host disease (aGvHD), a multi-organ system immunologic disorder that is particularly detrimental to the gastrointestinal tract. 

In light of increasing evidence highlighting the importance of the symbiosis between the microbiome and human hosts, researchers set out to explore the fate of gut microbiota in pediatric patients who had undergone HSCT.  Specifically, phylogenetic profiles and functional properties were examined in a longitudinal analysis to develop a better understanding of the specific role the gut microbiome plays in patients who develop aGvHD following a HSTC procedure. 

Ten pediatric patients who had undergone HSTC, 5 of which had developed aGvHD, were selected for analysis.  The trajectory of the microbiota ecosystem was monitored using gene pyrosequencing of fecal samples, which were collected before, during, and after the HSTC procedure.  Collection and observation continued for 3 to 4 months.  Additionally, researchers examined short-chain fatty acid (SCFA) production samples in the patients as a measurement of microbiota metabolic activity.  Short-chain fatty acids are critical metabolites that microbiota require in order to maintain healthy physiology.  Healthy microbiota are critical toward educating the immune system and maintaining homeostasis.

Marked changes were observed in the gut microbiome populations of all 10 patients immediately following the HSTC procedure.  There was a massive invasion of new bacterial species following the procedure, with less than 10% of the original microbiota being conserved.  In particular, there was a significant loss in health-promoting bacterial species such as Faecalibacterium and Ruminococcus.  Two months after the procedures, the species richness and metabolic activities in the patients’ guts was restored. 

The patients who developed aGvHD experienced a major drop in health-promoting bacteria and higher abundances of invading bacteria as compared to non-aGvHD patients.  Interestingly, the gut microbiomes of the non- aGvHD patients contained significantly higher populations of Bacteroides phylum.  On top of this, Bacteriodes were the most abundant species observed among the original 10% of microbiota conserved through the HSTC operation. 

This study points to the importance of the gut microbiome in helping maintain healthy integrity of the gut immune system following a HSTC procedure.  The finding that having low Bacteriodes populations may be an unrecognized consequence that could lead to the development of aGvHD is particularly interesting.  Should these bacteria be as important as this data suggests, preventative microbiome-driven therapies could be explored with the aim of preventing post-HSTC procedural aGvHD onset.  A therapy that could maintain healthy Bacteriodes populations prior to HSTC operations could perhaps present a viable solution.  

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.