New probe developed to detect specific bacteria associated with bacterial vaginosis

Confocal laser scanning images with 400x magnification of G.vaginalis biofilm in 2 vaginal slides (A and B) in a superimposed image: vaginal epithelial cells in blue and G. vaginalis specific PNA-probe in red. A: vaginal sample with dispersed bacteria; B: vaginal sample with bacteria in biofilm.

Confocal laser scanning images with 400x magnification of G.vaginalis biofilm in 2 vaginal slides (A and B) in a superimposed image: vaginal epithelial cells in blue and Gvaginalis specific PNA-probe in red. A: vaginal sample with dispersed bacteria; B: vaginal sample with bacteria in biofilm.

Bacterial vaginosis (BV) is a topic we have previously covered on the blog, because of its significance to women’s health. BV is a change in women’s vaginal bacterial composition, in which bacteria that are usually associated with health are at a decreased presence in comparison to BV-associated bacteria. BV is such an issue because it causes a biofilm to form that increase susceptibility HIV and other sexually transmitted infections. BV also has negative effects on pregnancy and is a threat to women of reproductive age. Clearly this is an important topic of research, and was the focus of an article recently published by PLOS ONE.

BV is usually characterized by the presence of Gardnerella vaginalis and Atopobium vaginae. A.vaginae has previously been shown to be much more common than G. vaginalis in BV patients. In the PLOS ONE study, researchers focused on finding the best way to detect these two bacteria in vaginal samples. Samples were taken from 119 women in Rwanda, between the ages of 18 and 35 years old. After testing multiple different probes that had been developed by the researchers, they found that something called the PNA FISH is a very good tool for detecting bacteria in biofilms. Through this study the scientists were able to detect that higher quantities of G. vaginalis and A. vaginae are associated with bacterial biofilms. Almost half the samples containing G. vaginalis also contained A. vaginae, whereas all of the samples that contained A. vaginae were also positive for G. vaginalis.

With the data collected, the researchers hypothesize that G. vaginalis is a main cause of vaginal biofilms when it is high enough in concentration. Hopefully with the discovery of effective probes, much more can be discovered about bacterial vaginosis.    

Please email blog@MicrobiomeInstitute.org for any comments, news, or ideas for new blog posts.

The views expressed in the blog are solely those of the author of the blog and not necessarily the American Microbiome Institute or any of our scientists, sponsors, donors, or affiliates.